Simultaneous Linear Equations

System of Equations

After reading this chapter, you should be able to: setup simultaneous linear equations in matrix form and vice-versa.

Matrix algebra is used for solving systems of equations. Can you illustrate this concept?

Matrix algebra is used to solve a system of simultaneous linear equations. In fact, for many mathematical procedures such as the solution to a set of nonlinear equations, interpolation, integration, and differential equations, the solutions reduce to a set of simultaneous linear equations. Let us illustrate with an example for interpolation.

Example 1

The upward velocity of a rocket is given at three different times on the following table.

Time, t	Velocity, v
<i>(s)</i>	(m/s)
5	106.8
8	177.2
12	279.2

Table 5.1. Velocity vs. time data for a rocket

The velocity data is approximated by a polynomial as

 $v(t) = at^2 + bt + c$, $5 \le t \le 12$.

Set up the equations in matrix form to find the coefficients *a,b,c* of the velocity profile.

Solution

The polynomial is going through three data points $(t_1, v_1), (t_2, v_2), \text{ and } (t_3, v_3)$ where from table 5.1.

Page | 74

$$t_1 = 5, v_1 = 106.8$$

 $t_2 = 8, v_2 = 177.2$
 $t_3 = 12, v_3 = 279.2$

Requiring that $v(t) = at^2 + bt + c$ passes through the three data points gives

$$v(t_1) = v_1 = at_1^2 + bt_1 + c$$
$$v(t_2) = v_2 = at_2^2 + bt_2 + c$$
$$v(t_3) = v_3 = at_3^2 + bt_3 + c$$

Substituting the data $(t_1, v_1), (t_2, v_2)$, and (t_3, v_3) gives

$$a(5^{2})+b(5)+c = 106.8$$

 $a(8^{2})+b(8)+c = 177.2$
 $a(12^{2})+b(12)+c = 279.2$

or

$$25a + 5b + c = 106.8$$
$$64a + 8b + c = 177.2$$
$$144a + 12b + c = 279.2$$

This set of equations can be rewritten in the matrix form as

 $\begin{bmatrix} 25a + 5b + c\\ 64a + 8b + c\\ 144a + 12b + c \end{bmatrix} = \begin{bmatrix} 106.8\\ 177.2\\ 279.2 \end{bmatrix}$

The above equation can be written as a linear combination as follows

	25		5		1		[106.8]
a	64	+b	8	+ c	1	=	177.2
	144		12		1		279.2

and further using matrix multiplication gives

25	5	1	$\begin{bmatrix} a \end{bmatrix}$		[106.8]
64	8	1	b	=	177.2
144	12	1	$\lfloor c \rfloor$		279.2

The above is an illustration of why matrix algebra is needed. The complete solution to the set of equations is given later in this chapter.

A general set of *m* linear equations and *n* unknowns,

 $a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = c_{1}$ $a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = c_{2}$ \dots $a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = c_{m}$

can be rewritten in the matrix form as

$\int a_{11}$	a_{12}		•	a_{1n}	$\begin{bmatrix} x_1 \end{bmatrix}$		$\begin{bmatrix} c_1 \end{bmatrix}$
<i>a</i> ₂₁	a_{22}	•	•	a_{2n}	x_2		<i>c</i> ₂
:				:	.	=	•
:				:	.		
a_{m1}	a_{m2}	•	•	a_{mn}	$\lfloor x_n \rfloor$		$\begin{bmatrix} c_m \end{bmatrix}$

Denoting the matrices by [A], [X], and [C], the system of equation is

[A][X] = [C], where [A] is called the coefficient matrix, [C] is called the right hand side vector and [X] is called the solution vector.

Sometimes [A][X] = [C] systems of equations are written in the augmented form. That is

$$[A:C] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \\ \vdots \\ c_n \end{bmatrix}$$

Page | 76