Simultaneous Linear Equations

System of Equations

After reading this chapter, you should be able to:
setup simultaneous linear equations in matrix form and vice-versa.

Matrix algebra is used for solving systems of equations. Can you illustrate this concept?
Matrix algebra is used to solve a system of simultaneous linear equations. In fact, for many mathematical procedures such as the solution to a set of nonlinear equations, interpolation, integration, and differential equations, the solutions reduce to a set of simultaneous linear equations. Let us illustrate with an example for interpolation.

Example 1

The upward velocity of a rocket is given at three different times on the following table.

Table 5.1. Velocity vs. time data for a rocket

Time, t	Velocity, v
(s)	$(\mathrm{m} / \mathrm{s})$
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as

$$
v(t)=a t^{2}+b t+c, \quad 5 \leq \mathrm{t} \leq 12 .
$$

Set up the equations in matrix form to find the coefficients a, b, c of the velocity profile.

Solution

The polynomial is going through three data points $\left(t_{1}, v_{1}\right),\left(t_{2}, v_{2}\right)$, and $\left(t_{3}, v_{3}\right)$ where from table 5.1.

$$
\begin{aligned}
& t_{1}=5, v_{1}=106.8 \\
& t_{2}=8, v_{2}=177.2 \\
& t_{3}=12, v_{3}=279.2
\end{aligned}
$$

Requiring that $v(t)=a t^{2}+b t+c$ passes through the three data points gives

$$
\begin{aligned}
& v\left(t_{1}\right)=v_{1}=a t_{1}^{2}+b t_{1}+c \\
& v\left(t_{2}\right)=v_{2}=a t_{2}^{2}+b t_{2}+c \\
& v\left(t_{3}\right)=v_{3}=a t_{3}^{2}+b t_{3}+c
\end{aligned}
$$

Substituting the data $\left(t_{1}, v_{1}\right),\left(t_{2}, v_{2}\right)$, and $\left(t_{3}, v_{3}\right)$ gives

$$
\begin{aligned}
& a\left(5^{2}\right)+b(5)+c=106.8 \\
& a\left(8^{2}\right)+b(8)+c=177.2 \\
& a\left(12^{2}\right)+b(12)+c=279.2
\end{aligned}
$$

or

$$
\begin{aligned}
& 25 a+5 b+c=106.8 \\
& 64 a+8 b+c=177.2 \\
& 144 a+12 b+c=279.2
\end{aligned}
$$

This set of equations can be rewritten in the matrix form as

$$
\left[\begin{array}{ccc}
25 a+ & 5 b+ & c \\
64 a+ & 8 b+ & c \\
144 a+ & 12 b+ & c
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

The above equation can be written as a linear combination as follows

$$
a\left[\begin{array}{c}
25 \\
64 \\
144
\end{array}\right]+b\left[\begin{array}{c}
5 \\
8 \\
12
\end{array}\right]+c\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

and further using matrix multiplication gives

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

The above is an illustration of why matrix algebra is needed. The complete solution to the set of equations is given later in this chapter.

A general set of m linear equations and n unknowns,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots \cdots+a_{1 n} x_{n}=c_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots \cdots+a_{2 n} x_{n}=c_{2} \\
& \text {... } \\
& \text {...................................... } \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots . .+a_{m n} x_{n}=c_{m}
\end{aligned}
$$

can be rewritten in the matrix form as

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & a_{2 n} \\
\vdots & & & & \vdots \\
\vdots & & & & \vdots \\
a_{m 1} & a_{m 2} & \cdot & \cdot & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
c_{m}
\end{array}\right]
$$

Denoting the matrices by $[A],[X]$, and $[C]$, the system of equation is
$[A][X]=[C]$, where $[A]$ is called the coefficient matrix, $[C]$ is called the right hand side vector and $[X]$ is called the solution vector.

Sometimes $[A][X]=[C]$ systems of equations are written in the augmented form. That is

$$
[A: C]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots . . & a_{1 n} \\
a_{21} & a_{22} & \ldots \ldots . & a_{2 n} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots \ldots & a_{m n} \\
\vdots & c_{n}
\end{array}\right]
$$

